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1. Introduction
Building robust, secure distributed systems in the pres-

ence of transient faults, node failures, and changes in net-
work topology poses a multitude of challenges. Most sys-
tems being built today are the integration of highly dis-
parate hardware and software components that interact via
a hardware bus or middleware infrastructure. During the
design of a component, non-functional requirements such
as fault-tolerance may complicate the design and are better
addressed during hardware/software integration by altering
the run-time behavior of components. Architectural pat-
terns, analogous to design patterns, are a means to develop
such mechanisms rapidly by reusing existing solutions.

To meet current engineering challenges such as perva-
sive and ubiquitous computing [8], one must adopt model-
driven approaches to build distributed applications. We pro-
pose the synchronous paradigm for component integration
and coordination: developers use an abstraction that re-
spects the synchrony hypothesis, i.e., each external event
is processed by the system completely before the arrival
of the next event. Based on the synchronous model, the
Secure Operations Language (SOL) [2] is designed as a
verifiable language for the integration of high assurance
systems. Programs in SOL are amenable to fully auto-
mated static analysis—such as automatic theorem prov-
ing [5], or model checking [4]— to ensure compliance with
application-specific requirements.

A module is the unit of specification in SOL. An agent
is a module instance. Assumptions for correct agent oper-
ation may be specified: execution of the agent aborts when
any assumption is violated. Fault-tolerant patterns, similar
to the one we discuss in the sequel, may be used to deal with
such exceptions in mission critical systems. Guarantees are
the required safety properties of the agent. A SOL mod-
ule specifies the required relation between input monitored
variables, and output controlled variables. Each dependent
variable (controlled as well as additional internal variables)
is defined as a function of other module variables. SOL, like
SCR [7], is an event-driven language, and borrows many
concepts from that language as well as from LUSTRE [6].
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Figure 1. Hot Standby Pattern Architecture.

SOL agents run on a distributed infrastructure SINS [3].
A SINS application comprises a set of software agents that
use services provided by SINS virtual machines on dis-
parate hosts over a network. SINS provides mechanisms
for the creation, deployment, and migration of agents, in ad-
dition to protocols for inter-agent communication and syn-
chronization. SINS uses the SPREAD toolkit [1] to provide
a high performance virtual synchrony messaging service.

2. Architectural Patterns

To meet fault tolerance, security, and real-time require-
ments of applications, we have extended SOL. Formal ar-
chitectural patterns can be instantiated and then automat-
ically compiled to a group of SINS agents running in a
distributed environment. We describe the language exten-
sions in the context of an architectural pattern denoted “Hot
Standby,” which provides a measure of fault-tolerant behav-
ior via replication.

In the Hot Standby pattern a function performed by
an agent at a primary site is replicated at a secondary
“Standby” site. In this pattern, the failure of the primary
site simply means computation results are retrieved from
the secondary site rather than the failed primary site.

The Hot Standby pattern of Figure 1 is a generalization
of the pattern given in [12] and is specified in an extension
of SOL. In the extended language, we assume any module
A has available attributes that can be accessed when writ-
ing architectural patterns. These include Boolean variables
X.fail indicating failure status of the sub-modules X of A,
and generic descriptions of groups of variables computed by
each sub-module (such as X.Mon for the tuple of monitored
variables comprising X’s input).



Additionally we employ temporal observer modules
(such as NEVER(B), meaning that B has never been true) in
describing the assumptions and guarantees of extended SOL
modules. This notion of temporal observers was pioneered
in the LUSTRE language [6].

We emphasize that sub-modules of architectural patterns
need not be compilations of modules written in SOL. The
sub-modules may be any COTS hardware/software compo-
nents that satisfy the appropriate assumptions and provide
the given guarantees (as invariants).

3. Proof of Correctness
We have used the theorem prover PVS [11] for formulat-

ing and proving the major invariant of Hot Standby:

(∗) NEVER(primary.fail) or NEVER(secondary.fail)
⇒ “Function computed correctly”

We have shown this result for a general vector-valued se-
quential function over the history of the system (not simply
a combinatorial function). PVS is convenient for the proofs
of invariants of architectural patterns since it supports defi-
nition of uninterpreted functions in a general setting.

Invariance of q for any instance of an architectural pat-
tern A follows from invariance of q for that instance of A in
which the sub-modules are the most general ones satisfying
the assumptions and guarantees imposed by A (this is a vari-
ant of the compositional proof rule given in [9]). Proof of
(*) for the most general instance was done by the computa-
tional induction method of [10]: (1) the property must hold
initially and (2) assuming that it holds in any state implies
it must hold in the next state; previously proved or assumed
invariants may be used as auxiliary lemmas.

4. Related Work
Several languages for describing architectural patterns

at various levels of abstraction exist, ranging from UML
to languages for describing system architectures. However
none of these languages has a well-defined formal opera-
tional or denotational semantics, which is necessary for the
development of architectural specifications with verifiable
properties. The use of architectural patterns for dependabil-
ity was introduced by Yau, et al. in [12].

5. Conclusions and Future Work
Our initial study of formal verification of architectural

patterns has shown it is straightforward to prove a safety
property associated with a generic module Hot Standby. We
have outlined the general proof methodology, and are in the
process of applying this methodology to examples that truly
require this level of formal support. We envision developing
and proving complex, parameterized, architectural patterns
with careful attention to requisite assumptions. Our vision

is that the hardware or software designer will use automatic
verification tools such as model checkers to prove that the
components of an architectural pattern instance satisfy the
assumptions and guarantees of that pattern. In future work
we plan to refine the computational induction proof method-
ology and to extend SOL with a polymorphic type system
in support of more general architectural patterns.

The overall goal of the NRL dependable middleware
project is to develop infrastructure that supports the devel-
opment of secure encapsulation mechanisms for untrusted
hardware and software COTS components. With such en-
capsulation mechanisms it should be feasible to protect
mission-critical distributed applications and to design sys-
tems that provide continued service in the presence of faults
or malicious attacks.
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